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EXECUTIVE SUMMARY 

Using the Social Security Disability Insurance benefit claim rate as a proxy, this study 

investigates two statistical approaches to forecasting long-term disability benefit claims. The 

results are extendable and should prove useful for insurance carriers who wish to predict short-

term future levels of long-term disability benefit claims. The study demonstrates that both the 

autoregressive integrated moving average (ARIMA) and autoregressive integrated moving 

average with exogenous variables (ARIMAX) methodologies have the ability to produce 

accurate four-quarter forecasts.  

 

First built was an ARIMA model, which produces forecasts based upon prior values in the time 

series (AR terms) and the errors made by previous predictions (MA terms). This typically allows 

the model to rapidly adjust for sudden changes in trend, resulting in more accurate forecasts. 

Next built was an ARIMAX model, which is very similar to an ARIMA model, except that it 

also includes relevant independent variables. While the inclusion of exogenous variables adds 

complexity to the model-building process, the model can capture the influence of external factors 

(e.g., the state of the economy) as well as management controllables (e.g., elimination period 

duration). 

 

The superior performance of both the ARIMA and ARIMAX models against the commonly used 

seasonally adjusted four-quarter moving average (SAMA) model can be seen in the following 

graph. Both models’ cumulative errors tend to remain close to zero, while the SAMA model’s 

cumulative errors deviate from zero more dramatically. The additional beneficial impact of 



© 2013 Society of Actuaries, All Rights Reserved  University of Southern Maine 

including exogenous variables in the model can also be seen by the ARIMAX model’s 

cumulative errors remaining closer to zero. 

 

  

The benefits to an insurance carrier who is able to accurately predict the disability benefit claims 

rate are clear. The carrier will be in a much better position to make a wide range of critical 

planning decisions that are affected by the claims rate, including establishing appropriate reserve 

levels to service approved claims. This study utilized two powerful techniques to forecast SSDI 

application rates for benefit claims. Social Security data were chosen primarily because they 

were readily publically available and familiar to many insurance analysts. However, the model-

building exercise detailed in the report can be readily applied to private-sector long-term 

disability benefit claim application rates. 
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1. INTRODUCTION 

 

1.1 Purpose of the Study 

The Maine Center for Business and Economic Research (MCBER) at the University of Southern 

Maine, in partnership with the Society of Actuaries (SOA), conducted a predictive model-

building exercise to statistically examine and incorporate factors that influence long-term 

disability (LTD) application rates. This report documents that study. Social Security 

Administration (SSA) claims-experience data were selected for the model building because they 

are publicly available and representative (in varying degrees) of the private-sector LTD claims 

experience. Private LTD carrier data were deemed inappropriate for use in this study because 

they vary in form, level of detail and their period of collection. Further, it was thought that LTD 

carriers would find it awkward to share or pool their data with other carriers because they 

frequently compete in the same markets. 

 

Many of the phenomena that drive Social Security disability application rates are likely to 

influence LTD application rates for private carriers, which means that exogenous variables that 

are significant predictors of Social Security Disability Insurance (SSDI) application rates are 

likely to be strong predictors for private carriers as well. Also, the future experience of at least 

some private-sector carriers was expected to display a statistical relationship with the application 

rates projected for Social Security disability.  

 

This study focuses most heavily on the autoregressive integrated moving average with 

exogenous variables (ARIMAX) methodology, which has the capacity to identify the underlying 

patterns in time-series data and to quantify the impact of environmental influences. This provides 
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the ARIMAX modeler with the capacity to isolate the influences of high-impact changes of both 

an external nature (e.g., competitors’ activities, the economy and governmental regulations) and 

an internal nature (e.g., policy coverage, product pricing and target markets). It is also important 

to note that ARIMAX model building can be reduced/simplified to pure autoregressive 

integrated moving average (ARIMA) model building if the forecaster/modeler wishes to examine 

historical behavior and make projections employing only statistically identified historical 

patterns/relationships. 

 

The target audience for this report is the actuary who either has a basic working knowledge of 

applied multiple-linear-regression model building or is willing to invest the energy to 

acquire/recover it. This prerequisite level of understanding of multiple-regression analysis is that 

which is typically derived from the one or two 3-credit (noncalculus-based) undergraduate 

courses in applied business statistics required at nationally accredited business schools. As 

further encouragement for the tentative reader to press forward, the two student co-authors of 

this report, Bob Swain and Caroline Cole, have completed only the six credits of undergraduate-

level statistics required by the business school at the University of Southern Maine. 

 

1.2 Background 

To coarsely evaluate the strength of the potential relationship between the application rates for 

SSDI and those of group LTD carriers, annual data from 2004–10 from 12 of the largest private-

sector carriers were examined. Six of the 12 carriers had annual application rates that were 

significantly correlated (  ≤ 0.10) with SSDI’s annual application rates at lags of 0, 1 and/or 2. 

Four of these six exhibited one or more significant positive correlations; the other two displayed 
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significant negative correlations, one at lag 1 and the other at lags 1 and 2. (It is important to note 

that the coarseness of the data and the small sample [n=7] placed serious constraints on this 

statistical analysis.) 

 

Accurate prediction of future application rates for long-term disability benefits is a major 

concern for private insurance carriers as well as the Social Security Administration. In both the 

private and public sectors, the number of claims filed is a key input to many planning decisions. 

For example, in both sectors, the proper level of reserves required to service approved claims 

needs to be established, mechanisms to generate revenue streams must be created to maintain 

appropriate reserve levels, and claims processing and management capacity requirements must 

be estimated. Unfortunately, application rates are extremely volatile because they are largely 

driven by forces external to the insurer, be it the SSA in the public sector or an LTD provider in 

the private sector. For example, at the national level, SSDI applications increased substantially
1
 

during six of the seven U.S. recessions between 1965 and 2012.
2
 Further, a December 2011 

article in the Wall Street Journal,
3
 titled “Jobless Tap Disability Fund,” reported on the findings 

of researchers who have studied the interaction between the condition of the U.S. economy and 

the SSDI application rate. Some of their findings are summarized below.  

 Professor Mark Duggan at the University of Pennsylvania studied the relationship 

between the U.S. unemployment rate and the application rate for SSDI benefits, and 

“estimates that the higher unemployment rate [in 2011 compared to 2007] accounts 

for 3,000 additional people applying for benefits each week.”  

                                                 
1
 Social Security Administration, “Disabled Workers.”

 

2
 Wikipedia contributors, “List of recessions in the United  States.” 

3
 Paletta and Searcey, “Jobless Tap Disability Fund.” 
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 Steven Goss, chief actuary of the Social Security Administration, “told Congress … 

that the 2008–09 recession led to a higher rate of ‘disability incidence’ than any other 

period except for the economic downturn in 1975.” 

 Professor Matthew Rutledge at Boston College studied the relationship between time 

left until unemployment benefits expire and the likelihood an individual would apply 

for SSDI benefits, and found that the unemployed are “significantly more likely to 

apply when [unemployment payments are] ultimately exhausted,” indicating that 

long-term unemployment is positively linked to the SSDI application rate. 

 Massachusetts Institute of Technology professor of economics David Autor summed 

up his sentiments this way: “To a very large extent, [SSDI] is our big welfare 

program.”  

Some of the other 16 major determinants of the disability application rate listed in Actuarial 

Study No. 118 produced by the SSA’s Office of the Actuary
4
 include the strength of regional 

economies, demographic shifts, levels of employment/unemployment and levels of inflation.  

 

1.3 The ARIMAX Methodology 

Proper ARIMAX model building has six statistical assumptions that must be addressed and re-

addressed as iterative model building progresses. These six assumptions also provide the 

underpinnings for rigorously performed multiple-regression analysis. While the rules of properly 

performed regression analysis are rarely fully honored by nonacademic practitioners, when 

satisfied, they normally lead to much-improved model-building results. 

 

                                                 
4
 Zayatz, “Social Security Disability.” 
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Simply put, an ARIMAX model can be viewed as a multiple regression model with one or more 

autoregressive (AR) terms and/or one or more moving average (MA) terms. Autoregressive 

terms for a dependent variable are merely lagged values of that dependent variable that have a 

statistically significant relationship with its most recent value. Moving average terms are nothing 

more than residuals (i.e., lagged errors) resulting from previously made estimates. 

 

So, for example, a nameless time-series dependent variable    might be well estimated by a 

properly weighted combination of the following four right-hand-side (RHS) variables. 

1.    = the value of the independent variable   at time   

2.      = the immediately preceding value of the dependent variable    at time     

3.      = the immediately preceding value of the dependent variable    at time     

4.      = the estimation error produced by the model at time     

This single-independent-variable, multiple-regression-like model for estimating the dependent 

variable    relies on the predictive value of the independent variable   (unlagged), the dependent 

variable itself (lagged by 1), the dependent variable again (lagged by 2) and a previously 

produced error term (lagged by 4). That is,  

                                 , 

where    ,    ,     and     are estimated coefficients. 

 

As implied by its shortened acronym, the pure ARIMA model-building methodology employs 

only lagged values of the dependent variable (i.e., AR terms) and lagged values of errors 

previously produced by the model (i.e., MA terms). The I in ARIMA refers to integrated and 

indicates that the dependent variable time series has been differenced one or more times to make 
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the time series stationary before model building begins. (Note: Practically speaking, stationarity 

implies that the mean and the variance of the time series are not changing over time.) So, for 

example, the quarterly application rate for SSDI benefits time series used illustratively in this 

report has displayed a strong overall pattern characterized by both an upward trend and quite-

regular quarterly seasonality. As discussed in Section 2.1, to remove the quarterly seasonality, 

the raw data were differenced by four and then differenced by one to remove the upward trend. 

  

The core difference between formal ARIMAX modeling and the more commonly used multiple 

regression modeling is that the ARIMAX modeling rigorously adheres to all six of the statistical 

assumptions underlying regression modeling. Section 2.2 explains these six assumptions. The 

ARIMAX model-building algorithm flowchart (Figure 8) makes clear the complexity of the 

iterative process. This level of complexity sometimes discourages model builders from fully 

adhering to the full set of six key assumptions required for proper regression modeling.  

 

Assumption 3 provides one example of the complexities of meticulously executed regressive 

modeling in that proper interpretation of the significance levels ( -values) of regression-model 

coefficients requires that the residuals produced by the model under scrutiny are normally 

distributed with a mean of zero, a constant variance and (most importantly) with no serial 

correlation. To satisfy these formal assumptions, it is frequently necessary to model the residuals 

with ARIMA tools, which often forces originally identified, logically attractive independent 

variables to lose their significance and to leave the model. This removal of independent variables 

that appeared to be strong candidates changes the form and character of the residuals and may 

result in a complete restart of the model-building process.  
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To address the complex, iterative nature of the ARIMAX model-building process when the pool 

of explanatory-variable candidates is large, MCBER built a system of integrated SAS
5
 software 

routines to automate the search for the optimal or near-optimal combination of exogenous 

variables, and AR and MA terms. The resulting ARIMAX models are statistically correct in all 

regards. Additionally, the composition of both models built using the SAS routines on the 

illustrative quarterly SSDI-application-rate data set (Q1 1982–Q4 2012) are very intuitively 

appealing. After differencing by four (to remove seasonality) and then one (to remove trend), the 

(AR1, AR3, AR10, MA4) ARIMA model produced the best fit with a mean error of 0.005901 

and a standard error of 0.0138 for the residuals. The  -values for the coefficients for the AR1, 

AR3, AR10 and MA4 terms were 0.0002, 0.0035, 0.0045 and < 0.0001, respectively. For the 

doubly differenced time series, this means that the ARIMA model was built by weighting the 

most recent actual, the actual three quarters earlier, the actual 10 quarters earlier and the 

estimation error made four quarters earlier. That is,  

                                                           . 

 

The best-fitting ARIMAX model (not coincidentally) has a structure similar to the previous 

ARIMAX model for the “nameless” dependent variable introduced on Page 7. The AR1 and MA4 

terms from the ARIMA model were accompanied by wage-and-salary employment (wse) (lag 0) and 

an AR2 term. That is,  

                                                       . 

                                                 
5
 http://www.sas.com  

http://www.sas.com/
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This model produced a mean error of 0.004823 and a standard error of 0.0130. The  -value for 

the coefficients of the AR1, MA4 and the independent variable     were all ≤ 0.0001, and the  -

values for the AR2 term was 0.0058. The fitting and forecasting capacities of the ARIMA and 

ARIMAX models are discussed in further detail on pages 50-52. 

 

1.4 Comparison of ARIMAX and SAMA Models 

To examine the relative precision of the best-fitting ARIMAX model, its fit performance was 

compared against that of the commonly used seasonally adjusted four-quarter moving average 

(SAMA) model. Figure 1 shows the 20 most recent actual quarterly SSDI application rates and 

the fit estimates produced by each model. The ARIMAX model clearly does a better job of 

estimating the actual application rates, particularly during periods of steady rising or declining. 
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Figure 1. A comparison of the ARIMAX and SAMA models’ fit estimates with the actual 

data. 

 

The absolute values of the estimation errors of the two models are compared in Figure 2, which 

further demonstrates the ARIMAX model’s superior precision. 
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Figure 2. A comparison of the ARIMAX and SAMA models’ absolute errors. 

 

 

The mean absolute percent errors (MAPEs) and mean absolute deviations (MADs) for both 

models over all 116 quarters for which both models produce estimates (Q1 1984–Q4 2012) and 

for the most recent 20 quarters (Q1 2008–Q4 2012) are shown in Chart 1. 

 

Chart 1. A comparison of the ARIMAX and SAMA models’ goodness-of-fit over two 

different time horizons. 
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Once again, the ARIMAX model clearly outperforms the SAMA model based on its lower 

MAPEs and MADs for both time periods. In comparison with the SAMA model, the ARIMAX 

model’s MAPEs improve by 24 percent and 37 percent, and its MADs improve by 29 percent 

and 38 percent. 

 

1.5 The Dependent Variable 

While disability insurance award rates (i.e., approval rates) are somewhat influenced by the 

previously mentioned 16 factors, they are also determined by forces internal to the insurance 

provider such as organizational goals, strategies, policies and practices created and administered 

from within. This tends to reduce the volatility in approval rates and makes them more 

predictable than application rates. Not surprisingly, as seen in Figure 3, the application rates for 

SSDI among insured workers have exhibited much more variability than the acceptance rates 

among SSDI applicants. During the 31-year period of this study (1982–2012), the quarterly 

application rate per 1,000 insured workers ranged from a low of 1.929 in Q4 1999 to a high of 

5.292 in Q1 2011, a rise of almost 274 percent. Over the 124 quarters in the data set, the 

application rate mean was 3.046 and the standard deviation was 0.869, yielding a coefficient of 

variation (      ) of 0.285. During the same period, the quarterly award rate, which is the 

proportion of applications approved, was relatively flat, ranging from 0.255 to 0.558, with a 

mean of 0.411 and a standard deviation of 0.063, yielding a considerably smaller coefficient of 

variation of 0.153. (Note that the coefficient of variation for application rates is 86.3 percent 

larger than that for award rates.) Figure 3 makes clear the contrast in the long-term slope and the 

volatility of the two time series. 
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Figure 3. Application and award rates for social security disability benefits. 

 
 

This study focuses on modeling the more highly volatile, publicly available quarterly SSDI-

application-rate/1000 insured time series presented in Figure 3. It serves well as a surrogate for 

private-sector submitted LTD claims experience in building time-series forecasting models. 

While the application-rate time-series patterns in the private sector are not created by all of the 

same forces that drive public-sector demand for disability payments, there are certainly many 

overlaps. In both settings, regional and national economic conditions heavily influence the rate 

of applications as do medical advancements and breakthroughs in the treatment of specific 

disorders. Other common influences include demographic shifts (e.g., aging baby boomers), 

technological improvements that can enhance one’s ability to work and level of participation of 

females in the workforce. 
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2. CONSTRUCTION AND VALIDATION OF ARIMA AND ARIMAX MODELS 

Section 2.1, Construction and Validation of an ARIMA Model, focuses on explaining and 

illustrating the steps in the methodology for constructing a pure ARIMA model. This illustration 

employs the previously introduced 124-point quarterly SSDI-application-rate time series (Q1 

1982–Q4 2012). This discussion also includes all of the statistical assumptions that must be 

satisfied for an ARIMA model to be valid. Results from the analysis of residuals from final 

ARIMA and ARIMAX models are examined to ensure they meet the necessary conditions. 

Model-fitting results are then presented and evaluated using standard goodness-of-fit measures 

produced by the fitting process. In addition, the accuracy/precision of the holdout forecasts 

produced by the final pure ARIMA model are examined. 

 

Section 2.2, Construction and Validation of an ARIMAX Model, is heavily patterned after 

Section 2.1, but focuses on explaining and illustrating the step-by-step methodology for building 

and validating an ARIMAX model. This discussion also includes an explanation of the much-

expanded series of statistical assumptions that must be satisfied for an ARIMAX model to be 

valid. In keeping with the ARIMA discussion in Section 2.1, results from the analysis of 

residuals are reviewed and the quality of the ARIMAX model is evaluated in the context of both 

in-sample fitting and holdout-sample forecasting. Lastly, both sets of goodness-of-fit statistics 

are compared with their counterparts produced by the pure ARIMA model to assess the 

incremental explanatory value contributed by the exogenous variables. 
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2.1 Construction and Validation of an ARIMA Model 

The AR (autoregressive) in ARIMA refers to previous (i.e., lagged) values of the dependent-

variable time series. MA (moving average) refers to lagged error terms (i.e., residuals) created by 

the ARIMA model’s inability to produce perfectly accurate estimates. So, ARMA (ARIMA 

without I) models are similar in appearance to a regression model with all of the right-hand-side 

(RHS) variables being lagged versions of the dependent variable    and lagged versions of the 

error term   . 

 

A general order ARMA (   ) model with   autogressive terms (       and   moving average 

terms (      would be represented as 

                                      –                            
6

 

In terms of structure, ARIMA (     ) models are the same as ARMA (   ) models where the 

time series has first been transformed by differencing. The   specifies the order of the 

differencing. For example, in Figure 5, the original undifferenced (   ) quarterly time series and 

the differenced once (   ) time series are graphed. In Figure 6, the original, undifferenced time 

series is differenced once (   ) by four, and then these differences are differenced again by one 

(   ). Since the time series must be stationary before it can be modeled with AR and MA 

terms,
7
 differencing is commonly used to transform a nonstationary time series into a stationary 

time series where the mean and variance are statistically judged to be constant.  

 

For example, a repeating daily time series that was strongly influenced by the day of the week 

(Sunday–Saturday) might likely be differenced by seven to remove the day-of-week effect. The 

                                                 
6
 Montgomery, Jennings, and Kulahci, Introduction to Time Series, 253. 

7
 SAS Institute Inc. SAS/ETS 9.2, 210. 
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resulting differenced time series would then represent the week-to-week change in the daily data 

and the variance created by the day-of-week effect would be largely removed. At the same time, if 

there were no underlying weekly trend in the original time series, then these transformed data 

would likely appear to be stationary with a mean close to zero. However, if this same original 

(untransformed) time series were increasingly trending up in a quadratic fashion, then the 

differenced-by-seven time series would exhibit a positive linear trend (without the day-of-week 

influence), and the mean would not be constant over time. To address this lack of stationarity, 

differencing the resulting time series by one would remove the upward trend and cause the mean 

of the twice-transformed time series to be relatively constant. If both the mean and variance were 

indeed constant, the doubly differenced series would be stationary. Conveniently, the degree of 

stationarity of the transformed time series may be statistically evaluated using the augmented 

Dickey-Fuller test.
8
  

 

Once a time series is statistically judged to be stationary, ARMA/ARIMA model building may 

begin. Identification of AR and MA terms requires the model builder to examine the 

autocorrelation coefficient function (ACF) and the partial autocorrelation coefficient function 

(PACF), to gain insights into the nature of the serial correlation.
9
  

 

At the most basic level, there are two types of ARMA/ARIMA models, subset (i.e., additive)
10

 

and order. An order ARMA (   ) model to estimate    is comprised of   terms involving 

                   and   terms involving                  . In other words, the 

autoregressive terms would include lags of 1 through   and the moving-average terms would 

                                                 
8
 Ibid., 246. 

9
 Nau, “Identifying the Numbers.”  

10
 SAS Institute Inc. SAS/ETS 9.2, 212. 
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include lags 1 through  . In contrast, a subset or additive model includes only specified lags for 

the autoregressive terms and specified lags for the moving-average terms. Stige et al. states that, 

“Subset ARIMA models are often used to obtain parsimonious models that may be more 

interpretable than nonsubset ARIMA models,” and cites three other references that discuss their 

success in applying subset models.
11

 The subset model-building approach was chosen for this 

effort for these reasons and because it facilitated the identification of models with much more 

finely tuned specifications, thus providing more attractive models from which to choose.  

 

Identifying the form of an ARMA or ARIMA model is an iterative process that requires selecting 

appropriate differencing schemes to achieve stationarity as signaled by the augmented Dickey-

Fuller test. Then, appropriately lagged AR and MA terms are introduced based on the significant 

patterns exhibited by their correlation functions. After the introduction of each AR or MA term, 

the residuals are re-examined for significance using the ACF and PACF. The process continues 

until these two correlation functions provide no further statistical clues to indicate that any AR or 

MA terms are missing. At this point, the Ljung-Box test for white noise
12

 may be used to 

statistically evaluate the degree to which the residuals are free of serial correlation. The statistical 

details of this are discussed in Montgomery, Jennings and Kulahci.
13

 

 

The flowchart in Figure 4 captures the sequence of steps that must be followed to construct a valid 

pure ARIMA model. As indicated by the two nested looping structures (BCB and 

BDEFCB), this process may take many iterations to complete. 

 

                                                 
11

 Stige, et al., “Thousand-Year-Long Chinese Time Series.”   
12

 SAS Institute Inc. SAS/ETS 9.2, 194. 
13

 Montgomery, Jennings, and Kulahci, Introduction to Time Series, 57. 

http://www.pnas.org/cgi/doi/10.1073/pnas.0706813104
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Figure 4. ARIMA model-building algorithm 

 

 
 

Building an ARIMA model for the 124-quarter SSDI-application-rate time series requires 

executing the five steps (labeled B, C, D, E and F in the flowchart above) at least once. 

1. The raw (undifferenced) time series must be evaluated for stationarity using the 

augmented Dickey-Fuller test (Step B) and transformed, if necessary. The SAS output in 

Chart 2 shows that, in its raw form, the time series is not stationary. The  -values for lags 

0–4 are very large (0.5685–0.9944) and do not support rejection of the null hypothesis 

that the series is not stationary. (Note: The single mean test that examines the null 

hypothesis that the time series has a constant mean is appropriate, as the time series must 

meet this condition before it can be modeled with the ARIMA methodology.) 
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Chart 2. SAS output: Augmented Dickey-Fuller test. 

     Type           Lags    Pr < Tau       

 

     Single Mean       0     0.5685        

                       1     0.8170        

                       2     0.9469        

                       3     0.9944        

                       4     0.9257        

 

 

2. In Figure 5, an upward trend in the undifferenced SSDI data is very apparent, as is the 

four-period seasonality made evident by the behavior of Q4, which is the smallest quarter 

for each of the 31 years. To remove the seasonality, differencing this quarterly time series 

by 4 produces a much more stable pattern (Step C). Figure 5 shows that the variance in 

the time series is significantly reduced by this transformation. Centered around 0, the 

differenced time series ranges from −0.5 to 1.0, in contrast with the original series that 

ranges from under 1.9 to over 5.2. Thus, differencing has reduced the sample range from 

3.3 to 1.5 (in approximate terms). 

  



© 2013 Society of Actuaries, All Rights Reserved  University of Southern Maine 

Page 21 

Figure 5. A comparison of the raw SSDI application rate data and the differenced data. 

 
 

 

3. While the differenced-by-four time series appears to be much more stable, it still exhibits 

a slight upward trend. This observation implies that further differencing by one might 

prove productive. Figure 6 contrasts the twice-differenced time series (first by 4 and then 

by 1) with the series that results from the single differencing by 4.  
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Figure 6. A comparison of the SSDI application rate data using two different differencing 

schemes. 

 
 

From purely a visual assessment, it appears that the best differencing transformation for 

providing a constant mean and minimum variance has been found. (Note: A commonly 

used rule of thumb
14

 is that the optimal order of differencing produces the lowest 

standard deviation.) This is further substantiated by examining the five highly significant 

(<0.0001)  -values for lags 0–4 in the augmented Dickey-Fuller test (Step B) presented 

in the single-mean portion of the SAS output shown in Chart 4. The five 0
+  -values for 

the single-mean model with lags 0–4 support rejection of the five null hypotheses 

asserting a unique mean at each lag value (0–4). This implies that the differenced data are 

                                                 
14

 Nau, “Identifying the Order.”  

 

-1.5 

-1 

-0.5 

0 

0.5 

1 

1.5 

1
9

8
2

Q
1

 

1
9

8
2

Q
4

 

1
9

8
3

Q
3

 

1
9

8
4

Q
2

 

1
9

8
5

Q
1

 

1
9

8
5

Q
4

 

1
9

8
6

Q
3

 

1
9

8
7

Q
2

 

1
9

8
8

Q
1

 

1
9

8
8

Q
4

 

1
9

8
9

Q
3

 

1
9

9
0

Q
2

 

1
9

9
1

Q
1

 

1
9

9
1

Q
4

 

1
9

9
2

Q
3

 

1
9

9
3

Q
2

 

1
9

9
4

Q
1

 

1
9

9
4

Q
4

 

1
9

9
5

Q
3

 

1
9

9
6

Q
2

 

1
9

9
7

Q
1

 

1
9

9
7

Q
4

 

1
9

9
8

Q
3

 

1
9

9
9

Q
2

 

2
0

0
0

Q
1

 

2
0

0
0

Q
4

 

2
0

0
1

Q
3

 

2
0

0
2

Q
2

 

2
0

0
3

Q
1

 

2
0

0
3

Q
4

 

2
0

0
4

Q
3

 

2
0

0
5

Q
2

 

2
0

0
6

Q
1

 

2
0

0
6

Q
4

 

2
0

0
7

Q
3

 

2
0

0
8

Q
2

 

2
0

0
9

Q
1

 

2
0

0
9

Q
4

 

2
0

1
0

Q
3

 

2
0

1
1

Q
2

 

2
0

1
2

Q
1

 

2
0

1
2

Q
4

 

Quarter 

Application Rate / 1000 Insured (Differenced by 4) Application Rate / 1000 Insured (Differenced by 1 and 4) 



© 2013 Society of Actuaries, All Rights Reserved  University of Southern Maine 

Page 23 

stationary and that there is a single mean. Lastly, while the (1,4) differencing scheme 

made the transformed series stationary, the  -values from the autocorrelation check for 

white noise remained very small and suggested that significant AR and/or MA terms 

were needed (Step D) to remove the highly significant autocorrelation still present in the 

twice-differenced (   ) series.  

 

Chart 3. SAS output: Autocorrelation check for white noise. 

 To      Chi-         Pr > 

Lag    Square   DF   ChiSq  -------------------Autocorrelations------------------- 

 

  6     68.39    6  <.0001   −0.382    −0.019     0.298    −0.514    0.173   0.144 

 12     72.19   12  <.0001   −0.084     0.043    −0.034    −0.126    0.052   0.013 

 18     73.53   18  <.0001    0.038    −0.037    −0.073    −0.035   −0.018  −0.009 

 24     94.93   24  <.0001    0.085    −0.043    −0.072     0.191   −0.213   0.217 

 

Chart 4. SAS output: Augmented Dickey-Fuller test. 

Type           Lags   Pr < Tau 

 

Single Mean       0    <.0001 

                  1    <.0001 

                  2    <.0001 

                  3    <.0001 

                  4    <.0001 

 

4. It is worth noting that 14 other differencing schemes and natural log transformations of 

differencing schemes were examined. In addition to diff (1,4), diff (1,2) also produced 

five very attractive  -values (<.0001) to support the assumption of stationarity. However, 

the standard deviation of the diff (1,4) time series was 0.221, about half of the larger 

standard deviation estimate of 0.407 produced by diff (1,2).  

  

5. With a stationary time series in hand, ARIMA model building began. Examination of the 

ACF plot of residuals (Step E) indicated that an MA4 term was needed based on its highly 
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significant negative correlation (−0.51367). The PACF provided evidence that an AR4 term 

with a correlation of −0.38350 was also significant, but not as significant as the MA4, so 

the MA4 was introduced as the first term in the ARIMA model. This MA4 term had a 

coefficient of 0.83511 and a highly significant  -statistic of 12.13, and produced a model 

with a Schwarz Bayesian criterion (SBC)
15

 of −83.076. 

 

6. Next, the ACF and PACF (Step E) for the first-stage residuals were re-examined to identify 

further MA or AR candidates that had the potential to make a statistically significant 

explanatory contribution to modeling the stage 1 residuals. The ACF at lag one and the 

PACF at lag one both had highly significant identical correlations of (−0.29184). However, 

the approximations for the standard errors for the PACF and the ACF used in computing 

the 95 percent confidence interval are slightly different. For the PACF, the standard error is 

approximately 
 

 
, where   is the number of data points in the time series under scrutiny.

16
 

(Note: After differencing by 1 and 4, the original time series with 124 quarters of data was 

reduced to a doubly differenced time series of   = 119 observations.) For the ACF, the 

standard error is approximately  
       

    
     

 
  where   is the lag of the ACF being 

examined and    is the autocorrelation at lag  ,
17

 which reduces to  
 

 
 for   = 1. To break 

this tie, the SBCs for the (AR1, MA4) model and the (MA1, MA4) model were compared, 

and, as shown in Chart 5, the (AR1, MA4) model prevailed with a preferred SBC of 

−89.324. So, the second term to enter was the AR1, as discussed above and shown in Row 

                                                 
15

 Beal, “Information Criteria Methods.”  
16

 SAS Institute Inc. SAS/ETS 9.2, 240. 
17

 Pecar, “Association Between.” 
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2 of the Chart 5. Note that the selection of the AR1 term over the MA1 term had a 

substantial impact on the quality of the model. While the PACF(1) spike and the ACF(1) 

spike were identical in terms of their significance levels, the positive impact of adding the 

AR1 to the initial MA4 term was clearly much greater, as reflected by the magnitude of the 

 -statistics for their coefficients (i.e., 3.38 vs. 1.93, respectively). Lastly, the  -statistics for 

the MA4 term in the two models are very different (i.e., 11.39 in Row 2 vs. 5.31 in Row 3), 

and reflect the enhancing role of the AR1 term and the detracting role of the MA1 on the 

MA4-foundation term common to both models. Further, the introduction of the AR1 term 

only decreased the MA4  -statistic by 1.22, from 12.61 to 11.39. In contrast, adding the 

MA1 to the MA4-foundation model reduced the MA4  -statistic by 7.30, from 12.61 to 

5.31. This is not surprising because the lag 4 error terms were bound to capture much of the 

explanatory value that the lag 1 error terms would have captured in isolation. (Note: The 

correlation between MA4 and MA1 was 0.428, while the [AR1, MA4] correlation was 

about two times less at 0.196.) 

 

Chart 5. ARIMA model-building results. 

Row # Model SBC Term Coefficient t Pr > |t| 

1 MA4 −84.027 MA4 0.84565 12.61 <.0001 

2 

 

AR1, MA4 

 

 

−89.324 

 

AR1 −0.30254 −3.38 0.0007 

MA4 0.80895 11.39 <0.0001 

3 

 

MA1, MA4 

 

−86.402 

MA1 0.28010 1.93 0.0536 

MA4 0.71989 5.31 <0.0001 

 

7. A two-stage re-examination of the ACF and PACF (Step E) of the (AR1, MA4) model’s 

residuals suggested that first an AR10 term, and then an AR3 term should be added. 
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Further examination of the ACF and PACF of the (AR1, AR3, AR10, MA4) model’s 

residuals provided no evidence that further AR or MA terms were needed. The 

preliminary subset ARIMA model is shown in Chart 6 as are the  -statistics and the 

 -values that demonstrate the strong explanatory power of the MA4, AR1, AR3 and 

AR10 terms. 

 

Chart 6. SAS output: Final ARIMA model. 

                                      Standard                 Approx 

         Parameter      Estimate         Error    t Value    Pr > |t|     Lag 

 

         MA1,1           0.78139       0.07645      10.22      <.0001       4 

         AR1,1          −0.31102       0.08355      −3.72      0.0002       1 

         AR1,2           0.24543       0.08396       2.92      0.0035       3 

         AR1,3          −0.27565       0.09699      −2.84      0.0045      10 

 

 

8. The autocorrelation check of residuals (Step F) over the range of lags from 1–24, 

provided little evidence that autocorrelation remained in the residuals. With four  -values 

that ranged from 0.0919 to 0.4340, as shown in Chart 7, there was not sufficient evidence 

to support rejection of the null hypotheses that the residuals were white noise. Thus, the 

(AR1, AR3, AR10, MA4) model appeared to be sound, and the search process concluded 

(Step G). 

 

Chart 7. SAS output: Autocorrelation check of residuals. 

To   Chi-         Pr > 

Lag  Square  DF   ChiSq  -------------------Autocorrelations------------------- 

 

  6   1.93   2   0.3802   −0.010    0.030    0.006   −0.024    0.015    0.116 

 12   7.99   8   0.4340    0.095    0.008   −0.147   −0.020   −0.039    0.116 

 18  17.24  14   0.2436   −0.061   −0.155   −0.155   −0.096   −0.076    0.001 

 24  28.79  20   0.0919   −0.006    0.064   −0.174    0.085   −0.057    0.180 
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9. In addition to performing the diagnostic Ljung-Box test to check for independence of the 

residuals, there are two other assumptions relating to residuals that must be validated: 

normality and homoscedasticity.
18

 

 Normality. The residuals should be normally distributed so that the  -statistics 

used to assess the significance of AR and MA terms are valid. A test often used 

for this purpose is the Kolmogorov-Smirnov (K-S) test,
19

 which examines 

goodness of fit and the maximum difference between the observed cumulative 

distribution function (CDF) and a fully specified hypothesized cumulative 

distribution. As the vertical distance between the two CDFs increases, the K-S 

statistic also increases, which discourages acceptance of the null hypothesis of 

normally distributed errors. In practice, the mean and standard deviation of the 

hypothesized normal cumulative distribution function are often estimated from 

the sample data set,
20

 resulting in conservatively approximated, rather than exact, 

 -values.  

  

                                                 
18

 Yurekli and Kurunc, “Testing the Residuals.”  
19

 National Institute of Standards and Technology, “Kolmogorov-Smirnov.”  
20

 SAS Institute Inc. “Tests for Normality.”  
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Figure 7. Normal probability plot of residuals. 
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In the Minitab-generated Figure 7 constructed with the 119 residuals from the 

(AR1, AR3, AR10, MA4) fitted model, the K-S statistic is 0.048 with an 

attractive estimated  -value of >0.150 for the N(0.005901, 0.1502) fitted 

distribution. This does not support rejection of the null hypothesis that the (AR1, 

AR3, AR10, MA4) model residuals are normally distributed. The average of the 

119 residuals     is close to zero (0.005901) and the standard error (S.E.) = 

StDev/   = 0.1502/     = 0.0138. As such, the mean of the residuals is not 

statistically different from zero since Z =     –       S.E. = [0.005901 – 0]/0.0138 

= 0.427. 
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 Homoscedasticity. Residuals from an ARIMA model should display a constant 

variance in order to support proper calculation of the unbiased standard errors that 

are part of the  - and  -statistics needed for hypothesis testing. Biased standard 

errors can lead to improper rejection of null hypotheses asserting the statistical 

significance of AR and/or MA terms and, thus, the composition of the ARIMA 

model. White’s test
21

 attempts to establish whether or not the variance is 

changing. The White’s test SAS output shown in Chart 8 indicates that the (AR1, 

AR3, AR10, MA4) model residuals do not exhibit heteroscedasticity at the   = 

0.0500 level. (Note: this very marginal  -value suggests there may be 

environmental influences not captured by this pure ARIMA model and that 

ARIMAX modeling with exogenous variables may prove useful.) 

 

Chart 8. SAS output: White’s test. 

                          DF    Chi-Square    Pr > ChiSq 

 

                           2          5.98        0.0503 

 

Having satisfied the assumptions of independence, normality and unchanging 

variance of the ARIMA residuals, the integrity of the (AR1, AR3, AR10, MA4) 

model has been established. 

 

10. In addition to the SBC (valued at −94.537), other goodness-of-fit measures tabulated for 

the winning (AR1, AR3, AR10, MA4) model were rolling four-quarter MADs and rolling 

four-quarter MAPEs calculated over the fitted data and recalculated over the holdout-

                                                 
21

 SAS Institute Inc. “Heteroscedasticity.” 
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forecast data. In both cases, the first estimate included in the calculation of the rolling 

statistics was for period 25 (Q1 1988). As a consequence, the fit statistics for both the 

rolling MAPE and rolling MAD were computed over the 100 most recent four-quarter 

periods beginning at Q1 1988 and ending at Q4 2012. 

 

In estimating the coefficients for the (AR1, AR3, AR10, MA4) model and in producing 

the rolling four-quarter holdout-forecasts, all of the historical data prior to the first 

forecasted quarter (Q1 1988) were employed. As such, the tabulated results realistically 

reflect the quality of the projections that would have been made at the time. In contrast, 

the four-quarter fit model is static because its parameters were estimated only once using 

all of the same 119 historical data points. Its rolling MADs and MAPEs reflect the extent 

to which one static model fit 100 subsequent four-quarter periods from Q1 1988 to Q4 

2012. 

 

Chart 9. ARIMA four-quarter rolling MAPEs and MADs (Q1 1988–Q4 2012). 
 

Estimate 

Type 

Goodness-of-

Fit Measures 
n Mean 

Std. 

Dev. 
Min. Max. 

Fit 
MAPE 100 3.72 1.51 1.18 9.14 

MAD 100 0.12 0.06 0.04 0.31 

Forecast 
MAPE 100 5.17 2.70 1.18 13.74 

MAD 100 0.16 0.10 0.04 0.63 

 

Examining the mean, standard deviation, minimum and maximum for the 100 four-

quarter rolling MAPEs and 100 four-quarter rolling MADs for the fit estimates and the 

forecast estimates, shown in Chart 9, the pure ARIMA model seems to be quite accurate. 

Naturally, the mean and standard deviation goodness-of-fit measures for the fits dominate 
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their counterparts from the holdout forecasts. In both cases, however, the mean four-

quarter rolling MADs of 0.12 and 0.16 are quite respectable in relation to the range of the 

raw time-series values (1.93–5.29) over the 25-year period. The rolling MAPEs averaged 

3.72 percent for the fit model and 5.17 percent for the forecast model over the same 25 

years. 

 

All of these goodness-of-fit statistics are quite attractive given the substantial expanse of 

the time period, as well as the dynamics of the economy and the evolution of SSA’s 

policies/persuasions. After all, this forecasting methodology relies only on historical 

time-series patterns to make its projections, and has no mechanisms for directly 

integrating the impacts of exogenous influences. Addressing this deficit is the topic of 

Section 2.2. 
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2.2 Construction and Validation of an ARIMAX Model  

 

ARIMAX is an acronym for autoregressive integrated moving-average with exogenous 

variables. It is a logical extension of pure ARIMA modeling that incorporates independent 

variables which add explanatory value. Conceptually, it is a merging of regression and ARIMA 

modeling.
22

 When the AR and MA terms in a pure ARIMA model are not sufficient to provide 

an acceptably high    (or some other measure of a model’s overall explanatory power), it is only 

natural to look for other driving phenomena whose influence over time is not sufficiently 

embedded in the historical values of the dependent time series. 

 

Building an ARIMAX model calls for combining the predictive value of both the trailing time-

series values themselves (  ) and the trailing model errors (  ) with the predictive value of 

exogenous variables. As a simple example, if a set of exogenous variables serving as 

independent variables in a multiple regression were all properly signed and highly significant, 

did not exhibit significant cross-correlation and produced a high    with the time series of 

residuals approximating white noise, there would be no need for ARIMAX modeling. However, 

if that same multivariate regression equation generated residuals that exhibited significant serial 

correlation, then pure ARIMA modeling of the residuals would be required in order to remove 

the serial correlation so that  -statistics could be properly calculated and the significance of the 

independent variables could be properly judged.  

 

The ARIMAX approach to time-series model building has two phases. This methodology 

traditionally begins with a logically attractive and statistically sound regression model. Then, the 

                                                 
22

 SAS Institute Inc. SAS/ETS 9.2, 21.3 
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errors from the regression are modeled with AR and MA terms to remove any statistically 

significant serial correlation that remains in the residual time series. (Note: The final ARIMAX 

model is composed of exogenous variables along with AR and/or MA terms, so it is sometimes 

useful to conduct an exploration for exogenous terms using the residuals from a pure ARIMA 

and then look at their cross-correlations with other explanatory variables.
23

 This is particularly 

true if the pure ARIMA is stable and it explains the vast majority of the variation of the 

dependent variable. After all, it is the exogenous, AR and MA terms that collectively comprise 

the final model, and they need to complement each other to maximize the explanatory power of 

the RHS variables while eliminating any significant autocorrelation among the residuals.) 

 

While the traditional (regression-first) two-phase process appears to be straightforward, it is not. 

There is a powerful interaction created by the integration of AR and MA terms into a multiple 

regression model that frequently creates the need for an iterative search process. This is 

particularly true if the pool of exogenous-variable candidates is large. For example, when a new 

exogenous variable is selected in a stepwise process and introduced to the ARIMAX model, it 

may well disrupt the white-noise pattern of the residuals from the previous step. This concern 

would need to be addressed with the addition of new AR and/or MA terms to re-establish the 

random pattern of residuals. In turn, the newly added AR and/or MA terms may explain variation 

previously explained by one or more resident exogenous variables, which then forces one or more 

of these impacted independent variables out of the ARIMAX model. This disruption, in turn, 

produces new residuals whose ACF and PACF must be examined to determine if additional AR 

or MA terms should be added to the model. Once the serial correlation is removed, additional 

                                                 
23
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exogenous variables may need to be removed due to lack of significance, and so the cycle 

continues.  

 

There are six statistical assumptions that must be examined/re-examined to ensure that the 

resulting ARIMAX model is valid at each stage of its evolution. Two of these six assumptions 

(denoted as assumptions 1 and 2) pertain to the residuals produced by the model, and the other 

four (denoted as assumptions 3–6) relate to the exogenous variables that comprise the model.  

 

 Assumption 1. As discussed in Section 2.1, ARIMA model building may not commence until 

the time series is stationary.
24

 This requires that the mean and the variance of the residual 

series are unchanging over time. The degree of stationarity of the residuals may be 

statistically evaluated using the augmented Dickey-Fuller test.
25

 As before with pure ARIMA 

model building, the  -values for the augmented Dickey-Fuller test for a single mean must be 

acceptably small to ensure stationarity. If the residuals produced by the regression are not 

sufficiently stationary, the level of stationarity may oftentimes be improved by applying the 

same well-chosen differencing scheme (or another transformation) to the dependent and to all 

of the exogenous variables. 

 

 Assumption 2. In addition to stationarity, the residual series must not exhibit significant 

serial correlation (i.e., autocorrelation). The Ljung-Box test may be used to statistically 

evaluate the degree to which the residuals are serially correlated. If significant serial 

correlation exists among the residuals, it may be reduced by adding an appropriate 

                                                 
24

 SAS Institute Inc. SAS/ETS 9.2, 215. 
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combination of one or more significant AR and/or MA terms identified from the PACF and 

ACF, respectively. 

 

 Assumption 3. The estimated coefficient for an exogenous variable must be significantly 

different than 0, as judged by its  -statistic. However, the calculation of the significance 

levels of  -statistics ( -values) for regression coefficients assumes that the regression 

residuals are white noise. If Assumption 2 is violated, and these residuals are not white noise, 

then their serial correlation must be removed with ARIMA modeling. This calls for the pure 

ARIMA modeling process discussed in Section 2.1 and outlined in Figure 4. 

 

 Assumption 4. An exogenous variable must not display evidence of receiving feedback from 

the dependent variable. That is, an attractive exogenous-variable candidate should display a 

significant causal relationship with the dependent variable without the dependent variable 

displaying a causal relationship with it. The directions of significant causality between an 

exogenous variable and the dependent variable may be tested using the Granger causality 

test
26

. If reverse causality is detected, the exogenous variable must be removed from the pool 

of independent-variable candidates. This test must be performed on the dependent and 

independent variable in their current form (untransformed or transformed). 

 

 Assumption 5. The sign of the coefficient for each significant exogenous variable must be 

reasonable. The expected (i.e., reasonable) sign can be determined prior to model building by 

examining the signs of exogenous-variable correlation-coefficients that display a significant 
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correlation with the dependent variable. If the dependent variable required a transformation 

to achieve stationarity, that same transformation would also be applied to the independent-

variable candidates, and the bivariate-correlation analysis would then focus on the pair of 

transformed variables. 

 

 Assumption 6. The surviving exogenous variables comprising the final model must not 

exhibit a significant degree of multicollinearity. To meet this condition, one at a time, each of 

the surviving exogenous variables must be individually tested for significant multicollinearity 

using the variance inflation factor (VIF =        ]) to ensure they are all sufficiently 

linearly independent. When the multicollinearity among exogenous variables is too strong, 

least squares estimation becomes inefficient, causing the standard errors of the estimates to 

become large and result in overstated  -values. A VIF of 10 or less is generally considered to 

indicate an acceptable level of correlation among the exogenous variables. The VIF 

calculations must be performed for each of the independent variables expressed in their 

current form (i.e., transformed or untransformed). (Note: Each of the     s is actually 

calculated by selecting one of the   independent variables to assume the role of dependent 

variable in a regression with all of the remaining       independent variables serving as 

independent variables.) Thus, the VIF ≤ 10 rule of thumb is the equivalent of requiring that 

each independent variable’s variation be no more than 90 percent explainable based on the 

weighted aggregate of the other       independent variables. 
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The flowchart shown in Figure 8 presents the algorithm used to build a valid ARIMAX model. It 

is constructed using an iterative scheme based largely on the principles embodied in the six 

assumptions above. As indicated by the maze of 40 nested and unnested looping structures, the 

examination/re-examination of assumptions 1–6 provides the foundation for the model-building 

methodology. Excluding the A. Start and the R. Stop nodes, there are 16 steps, many of which are 

executed numerous times. The five core steps (B–F) in the ARIMA model-building algorithm 

presented earlier are also embedded in this flowchart. The substantial increase in steps from 5 to 

16 is largely based on the complexities introduced by marrying the elements/requirements of 

regression model building with those of the pure-ARIMA model building. 
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Figure 8. ARIMAX model-building algorithm. 
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There are three families of looping structures labeled B, H and I, with two B-loops, six H-loops and 

two I-loops. Note that the six H-loops are nested inside the B2 loop and the two I-loops both are 

nested inside all six H-loops. This creates 40 loops in total: 10 unnested, 18 singly nested and 12 

doubly nested. 

 B-loops: 

1. BCB 

2. BD E F G H C B 

 H-loops: 

1. H I K L H 

2. H I J K L H 

3. H I K M N H 

4. H I J K M N H 

5. H I K M O P H 

6. H I J K M O P H 

 I-loops: 

1. I K M O Q I 

2. I J K M O Q I 

One of the early tasks of ARIMAX model building is to identify and preliminarily evaluate the 

logical/statistical attractiveness of exogenous variable candidates. SSDI application rates have been 

well studied over the years, so for this study, there was no shortage of attractive explanatory-variable 

candidates. The U.S. Social Security Administration website has a wealth of literature on this topic, 

most of which relates to the condition of the U.S. economy. For this model-building exercise, 14 

exogenous-variable candidates were identified. Expecting that these 14 exogenous variables might 
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lead quarterly SSDI application rates, each of 14 candidates was assigned to lags of 0, 1, 2, 3 and 4 

quarters, thus creating 70 independent-variable candidates in total. Chart 10 provides each variable’s 

name, description and data source. 

 

Chart 10. 70 Exogenous-variable candidates. 

SAS Variable 

(Each With Lags  

0–4) 

 

Description 

 

Source 

total_permits total single and multifamily permits Moody’s Analytics 

housing_starts housing starts (in millions) Moody’s Analytics 

median_home_price median single-family home price 

(in thousands) 

Moody’s Analytics 

total_fixed_invest total fixed investment (in billions 

of 2005 dollars) 

Moody’s Analytics 

wse  number of nonfarm, payroll jobs in 

the U.S economy (in thousands) 

bls.gov/data: Employment; 

Employment, Hours, and Earnings—

National (Current Employment 

Statistics) 

resident_employment number employed (in thousands) bls.gov/data: Employment; Labor 

Force Statistics (Current Population 

Survey) 

unemployment unemployment rate bls.gov/data: Unemployment; Labor 

Force Statistics (Current Population 

Survey) 

num_unemployed number unemployed (in thousands)  bls.gov/data: Unemployment; Labor 

Force Statistics (Current Population 

Survey) 

cpi_urban Consumer Price Index for all urban 

consumers – all items 

bls.gov/data: Inflation & Prices; All 

Urban Consumers (Consumer Price 

Index) 

nom_gdp GDP (in billions of current dollars) bea.gov/national/index.htm:  

Current-dollar and “real” GDP 

real_gdp GDP (in billions of 2005 dollars) bea.gov/national/index.htm:  

Current-dollar and “real” GDP 

mean_earnings mean individual weekly earnings Moody’s Analytics 

weekly_hours average number of weekly hours: 

total nonfarm 

Moody’s Analytics 

hourly_earnings average hourly earnings: total 

nonfarm 

Moody’s Analytics 

Lagged (1–4) forms for exogenous variables are denoted with suffixes.  
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Building an ARIMAX model requires executing some combination of the 16 (or fewer) steps in 

Figure 8, the ARIMAX model-building flowchart. 

 

1. As in the pure ARIMA model-building process discussed earlier, the first two steps 

involve testing the dependent time series for stationarity using the augmented Dickey-

Fuller test (Step B) and, if required, selecting an appropriate differencing scheme for the 

dependent variable (Step C). 

 

2. Frequently, for consistency, the differencing scheme chosen for the dependent variable 

during pure ARIMA model building can be applied to exogenous-variable candidates to 

make them stationary as well. With both the dependent and independent variables 

stationary, the correlations are more likely to be stable over time.
27

 In this case, all of the 

exogenous-variable candidates became stationary after being differenced by 1 and 4. 

Note that these transformations must be performed at an early stage in the model-building 

process so that subsequent tests such as the Granger test of causality will employ the 

exogenous variables in the form they will subsequently appear in the final model. 

  

3. Next, the transformed exogenous variables are screened using the Granger test for 

causality (Step E) to remove any variables that display significant evidence of reverse 

causality, as discussed above in Assumption 4. Any variable with a  -value below 0.0500 

led to rejection of the null hypothesis of no reverse causality, thus eliminating it as a 

candidate for inclusion in the model. This reduced the pool of exogenous-variable 
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candidates from 70 to 57. The 13 eliminated variables and their associated  -values are 

shown in Chart 11. 

 

Chart 11. Exogenous-variable candidates eliminated by Granger test for causality. 

Variable_Name Chi-Square Pr > ChiSq 

wse_3 10.08 0.0015 

wse_1 9.24 0.0024 

mean_earnings_2 8.42 0.0037 

total_fixed_invest_3 7.15 0.0075 

unemployment_2 6.76 0.0093 

real_gdp_2 6.42 0.0113 

num_unemployed_2 6.41 0.0114 

weekly_hours_2 6.40 0.0114 

total_fixed_invest_1 6.37 0.0116 

cpi_urban_1 6.19 0.0128 

nom_gdp_2 5.73 0.0167 

resident_employment 5.02 0.0251 

median_home_price_1 4.79 0.0286 

 

4. As previously discussed in Assumption 5, the “correct” signs for the remaining 

transformed exogenous-variable candidates (Step F) must be determined by performing 

an analysis of the correlations between the transformed exogenous-variable candidates 

and the transformed dependent variable. Variables that do not display a significant 

correlation (  < 0.0500) are not assigned an expected sign and are removed from the pool 

of independent-variable candidates. Chart 12 presents the 14 surviving 

exogenous-variable candidates, their correlation coefficients and their corresponding 

 -values. (Note: Since SAS employs a two-tailed test of significance for correlation 

coefficients, the  -value threshold of 0.1000 was employed.) 
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Chart 12. Exogenous-variable candidates remaining after correlation analysis. 

Exogenous Variable Corr. Coef.  -value 

wse −0.31133 0.0007 

total_fixed_invest −0.27009 0.0035 

cpi_urban −0.25722 0.0055 

real_gdp_1 −0.25392 0.0062 

nom_gdp −0.24711 0.0078 

nom_gdp_1 −0.23703 0.0108 

unemployment_1 0.22976 0.0135 

num_unemployed_1 0.22806 0.0142 

weekly_hours_1 −0.20689 0.0265 

mean_earnings_1 −0.20241 0.0300 

median_home_price −0.17641 0.0593 

num_unemployed 0.17640 0.0593 

real_gdp −0.17133 0.0671 

cpi_urban_4 0.16875 0.0714 

 

The signs of these 14 significant correlation coefficients are retained for subsequent use 

in Step O to eliminate from the ARIMAX model any of the significant exogenous 

variables whose coefficients are incorrectly signed. 

 

5. The forward/backward stepwise regression procedure in SAS provides an iterative 

approach to regression model building that both adds significant variables to the model 

and removes variables from the model that become insignificant (Step G). The process 

begins by determining the exogenous-variable candidate with the smallest  -value that is 

less than the chosen “enter” significance-level threshold of 0.1000 and adding that 

variable to the model. Next, the  -values of all of the variables in the current model are 

checked, and the variable with the largest  -value above the chosen “stay” significance-

level threshold of 0.0500 is removed. This process of adding and deleting exogenous 



© 2013 Society of Actuaries, All Rights Reserved  University of Southern Maine 

Page 44 

variables continues until there are no variables that meet either criterion.
28

 The final 

results of the three iterations of the stepwise process are displayed in the SAS output of 

Chart 13. 

 

Chart 13. SAS output: Summary of stepwise selection. 

     Variable      Variable    Number   Partial   Model                         

Step Entered       Removed     Vars In  R-Square R-Square C(p)  F Value  Pr > F 

 

  1  wse                           1     0.0968   0.0968  0.8865  12.22  0.0007 

  2  num_unemployed                2     0.0238   0.1206 −0.1150   3.06  0.0830 

  3                num_unemployed  1     0.0238   0.0968  0.8865   3.06  0.0830 

 

As shown in the SAS output in Chart 14, the final iteration of the stepwise-regression 

process results in a standard regression model containing one exogenous variable, which 

is highly significant (with a  -value of 0.0007). 

 

Chart 14. SAS output: Stepwise-regression parameter estimates. 

                     Parameter      Standard                         Variance 

  Variable    DF      Estimate         Error   t Value   Pr > |t|   Inflation 

 

  wse          1   −0.00011108    0.00003177     −3.50     0.0007     1.00000 

 

6. The significance level of this independent-variable coefficient is calculated under the 

assumption that the residuals simulate white noise. To properly make these assessments, 

the residuals must be tested first for stationarity and then for serial correlation. As shown 

in Chart 15, with  -values <.0001 for all five lags, the augmented Dickey-Fuller test 

results provide strong evidence that the residuals of the regression are stationary (Step H).  
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Chart 15. SAS output: Augmented Dickey-Fuller test. 

 Type           Lags   Pr < Tau 

 

 Single Mean       0    <.0001 

                   1    <.0001 

                   2    <.0001 

                   3    <.0001 

                   4    <.0001 

 

Next, with the residuals shown to be stationary, they are examined to determine if serial 

correlation is present. 

 

7. The four very small  -values from the Ljung-Box test (shown in Chart 16) support 

rejection of the null hypothesis that there is no autocorrelation in the residuals. This 

provides an indication that AR and/or MA terms must be added into the model to remove 

the serial correlation. 

 

Chart 16. SAS output: Autocorrelation check of residuals. 

To    Chi-         Pr > 

Lag  Square  DF    ChiSq   ------------------Autocorrelations------------------ 

 

  6   78.17   6   <.0001   −0.447   −0.055    0.336   −0.516    0.143    0.167 

 12   82.04  12   <.0001   −0.093    0.038    0.005   −0.133    0.041    0.000 

 18   82.41  18   <.0001    0.040   −0.009   −0.030    0.008   −0.005   −0.005 

 24  106.82  24   <.0001    0.077   −0.064   −0.087    0.177   −0.237    0.241 

 

As in the case of building a pure ARIMA model, the process of adding AR and/or MA 

terms into the regression model is driven by the significance of the ACF and PACF 

spikes in the residual time series (Step J). Examination of both the ACF and PACF shows 

that the most significant spike is in the ACF at lag 4, indicating that an MA4 term should 

be included in the model. Subsequent re-examination of the PACF and ACF of the times 

series of revised residuals indicates there are equally significant spikes at lag 1 in both the 



© 2013 Society of Actuaries, All Rights Reserved  University of Southern Maine 

Page 46 

ACF and the PACF. Consistent with the tie-breaking logic previously employed in 

building the pure ARIMA model, the SBCs are examined for both models. As shown in 

rows 2 and 3 of Chart 17, introducing an MA1 term into the model produces an SBC of 

−101.6, while introducing an AR1 term instead produces a more attractive SBC of 

−108.315. Additionally, the correlation between the MA1 and MA4 terms is 0.473, while 

the correlation between AR1 and MA4 is only 0.207. This explains the mitigating impact 

that including an MA1 term has on the  -statistic of the MA4 term, reducing it from 

11.64 to 4.38. In contrast, introducing an AR1 term instead of the MA1 term only 

decreases the MA4  -statistic slightly from 11.64 to 10.47. 

 

Chart 17. ARIMAX model-building results. 

Row # Model SBC Term Coefficient   Pr >     

1 MA4 −90.1125 MA4 0.82916 11.64 <.0001 

2 

 

AR1, MA4 

 

−108.315 

AR1 −0.42587 −4.99 <.0001 

MA4 0.79019 10.47 <.0001 

3 

 

MA1, MA4 

 

−101.6 

MA1 0.39005 2.39 0.0168 

MA4 0.60995 4.38 <.0001 

 

Examination of the ACF and PACF shows there is a significant spike in the PACF at lag 

2, indicating that an AR2 term should be included in the model. Further examination of 

the ACF and PACF indicates there are no other significant spikes. 

 

8. After the significant (  < 0.05) AR1, AR2 and MA4 terms are entered, it is necessary to 

ensure that the exogenous variable(s) in the model remain significant (Step K). The 
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variable     is still significant ( -value <.0001 indicated in Chart 18) and can remain in 

the model. 

 

Chart 18. SAS output: ARIMAX model. 

Parameter    Estimate       StdErr   tValue    Probt   Lag   Variable 

 

  AR1,2    −0.2484659   0.09007034    −2.76   0.0058     2   adj_rate 

  AR1,1    −0.5266464   0.09091027    −5.79   <.0001     1   adj_rate 

  NUM1     −0.0000842   0.00001235    −6.82   <.0001     0   wse      

  MA1,1    0.79784551   0.07491641    10.65   <.0001     4   adj_rate 

 

9. Because there is only one exogenous variable present in the model, multicollinearity is 

not a concern (Step M). The SAS output is shown in Chart 19. 

 

Chart 19. SAS output: Exogenous-variable multicollinearity check. 

                       Parameter     Standard                         Variance 

Variable  Label  DF     Estimate        Error   t Value   Pr > |t|   Inflation 

 

wse       wse     1  −0.00009432   0.00002953     −3.19     0.0018     1.00000 

 

10. The sign check (Step O) ensures the remaining exogenous variable has a proper sign that 

matches what was determined by the correlation analysis in Step F, as shown in Chart 20. 

 

Chart 20. SAS output: Exogenous-variable sign check. 

 

Parameter Standard 

Pearson 

Correlation Sign 

Variable Estimate Error Coefficient Check 

wse −0.00009432 0.00002953 −0.31133 Pass 

 

11. Lastly, all of the  -values from the Ljung-Box test are sufficiently large (ranging from 

0.1946 to 0.5857 as indicated in Chart 21), indicating that the null hypothesis of white 

noise residuals should not be rejected (Step Q).  
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Chart 21. SAS output: Autocorrelation check of residuals. 

To    Chi-         Pr > 

Lag  Square  DF    ChiSq   ------------------Autocorrelations------------------ 

 

  6   2.34   3   0.5055    0.002    0.025    0.040   −0.015    0.002    0.126 

 12  10.23   9   0.3325    0.078    0.035   −0.119   −0.190    0.017    0.048 

 18  13.22  15   0.5857   −0.027   −0.095   −0.056    0.007   −0.089    0.023 

 24  26.32  21   0.1946    0.006    0.042   −0.185    0.063   −0.047    0.213 

 

The final ARIMAX model contains an AR1 term, an AR2, an MA4 term and one highly 

significant exogenous variable (wse unlagged), as shown Chart 22. 

 

Chart 22. SAS output: Final ARIMAX model. 

Parameter     Estimate       StdErr    tValue    Probt    Lag   Variable 

 

  AR1,2     −0.2484659   0.09007034     −2.76   0.0058      2   adj_rate 

  AR1,1     −0.5266464   0.09091027     −5.79   <.0001      1   adj_rate 

  NUM1      −0.0000842   0.00001235     −6.82   <.0001      0   wse      

  MA1,1     0.79784551   0.07491641     10.65   <.0001      4   adj_rate 

 

Based on their  -statistics, the two most important RHS drivers in this model are clearly 

the MA4 and the wage-and-salary employment (    lag 0). The MA4 makes sense 

because it provides an adjustment to the model based on the estimation error made in the 

same quarter one year earlier. The strong influence of wage and salary employment is 

also intuitively appealing because the availability of jobs strongly influences the level of 

unemployment. (Recall the WSJ article discussed earlier that referred to SSDI as “our big 

welfare program.”) In third place, also with a  -value of 0.0001, is the AR1 term that 

shows the important influence of the immediately preceding quarter. Lastly, the AR2 

term with its less significant ( -value = 0.0058) coefficient captures the diluted influence 

of the AR1 term. 
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12. As in the case of the pure ARIMA model, it is necessary to ensure that the residuals of 

the ARIMAX model satisfy the conditions of normality and homoscedasticity. The 

Kolmogorov-Smirnov (K-S) test on the 119 residuals from the ARIMAX model yields a 

K-S statistic of 0.069 with a  -value of >0.150, which does not support rejection of the 

null hypothesis of normally distributed residuals (see Figure 9). 

 

Figure 9. Normal probability plot of residuals. 
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In addition, White’s test, with a  -value of 0.2043, indicates that the null hypothesis of 

homoscedasticity cannot be rejected (see Chart 23). 
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Chart 23. SAS output: White’s test. 

DF    Chi-Square    Pr > ChiSq 

 

2          3.18        0.2043 

 

13. The SBC (−110.996) of the ARIMAX model (with its additional SBC-penalizing 

exogenous variable and additional AR2 term) is more attractive than that of the pure 

ARIMA model (−94.537). It is also useful to examine the goodness-of-fit measures such 

as the MAD and MAPE for the new ARIMAX model and to compare them to those of 

the pure ARIMA model to help evaluate the improved precision of the ARIMAX model. 

 

As before with the pure ARIMA model, the four-quarter rolling MAPEs and MADs were also 

tabulated for the ARIMAX fit and forecast models. Unsurprisingly, the fits again outperform the 

holdout forecasts, although both show quite impressive goodness-of-fit results (see Chart 24). 

 

Chart 24. ARIMAX four-quarter rolling MAPEs and MADs (Q1 1988–Q4 2012). 

Estimate 

Type 

Goodness-of-

Fit Measures 
n Mean 

Std. 

Dev. 
Min. Max. 

Fit 
MAPE 100 3.20 1.62 0.79 9.14 

MAD 100 0.10 0.06 0.02 0.32 

Forecast 
MAPE 100 4.06 2.24 0.62 12.07 

MAD 100 0.12 0.07 0.02 0.37 

 

As seen in the performance comparison displayed in Chart 25, the ARIMAX model’s average 

four-quarter rolling fit and forecast MAPEs show improvement at 3.20 percent and 4.06 percent, 

when compared to the pure ARIMA model’s 3.72 percent and 5.17 percent, respectively. 

Further, the ARIMAX model’s four-quarter rolling MADs for the fit and forecast models 

averaged 0.10 and 0.12, respectively, which is an attractive relative improvement over their 
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counterparts in the pure ARIMA model (0.12 and 0.16). In fact, when comparing the four-quarter 

rolling MAPEs and MADs for the forecast and fit estimates, the ARIMAX model is preferable to 

the ARIMA model in almost every way, with its generally lower means, standard deviations, 

minimums and maximums (as seen by the ARIMAX/ARIMA ratios). In Chart 25, all but two of 

the 16 MAPE and MAD ARIMAX/ARIMA ratios for the means are less than or equal to one. 

 

Chart 25. Performance comparison of ARIMA and ARIMAX models:  

Four-quarter rolling MAPEs and MADs (100 quarters: Q1 1988–Q4 2012). 

Estimate 

Type 

Goodness-of-

Fit Measures 
Model Mean 

Std. 

Dev. 
Min. Max. 

 

 

 

 

 

FIT 

 

 

 

 

 

 

 

 

MAPE 

 

 

 

 

ARIMA 
3.72 1.51 1.18 9.14 

 

ARIMAX 
3.20 1.62 0.79 9.14 

 

ARIMAX/ARIMA 
0.86 1.07 0.67 1.00 

 

 

MAD 

 

 

 

 

ARIMA 
0.12 0.06 0.04 0.31 

 

ARIMAX 
0.10 0.06 0.02 0.32 

 

ARIMAX/ARIMA 
0.83 1.00 0.50 1.03 

 

 

 

 

 

FORECAST 

 

 

 

 

 

 

 

 

MAPE 

 

 

 

 

ARIMA 
5.17 2.70 1.18 13.74 

 

ARIMAX 
4.06 2.24 0.62 12.07 

 

ARIMAX/ARIMA 
0.79 0.83 0.53 0.88 

 

 

MAD 
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As a further mechanism to contrast the performance of the ARIMA and ARIMAX models, time-

series graphs of the 100 four-quarter rolling MAPEs and MADs produced by the ARIMA and 

ARIMAX models are provided below. These graphs serve to further confirm the benefits of 

including exogenous variables in the model-building process. 

 

Figure 10. Time-series graphs of four-quarter rolling MAPES and MADS: Produced by the 

ARIMA and ARIMAX forecast and fit models (100 quarters: Q1 1988–Q4 2012). 
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